Monte-carlo Simulation: Ising Model in 2D and 3D

2021 Physics Tripos Submission

May 2021

Abstract

In this project, Monte-carlo simulations of 2D and 3D Ising model are performed based on
Metropolis algorithm in Python to investigate critical behaviors of simple ferromagnetic systems.
162,322,642 2D lattices and 163 3D lattice are studied for their decorrelation time, averaged
magnetisation, specific heat, magnetic susceptibility, and critical components. Finite size scaling
is also examined. Independent estimates of critical temperature 7T, are obtained along the
investigations of physical properties and combined for all the lattices. Simulation results exhibit
signature critical behaviors (i.e. critical slow down, symmetry breaking) as expected. Final T,
results for 162,322,642, 163 lattices are 2.309 4 0.075, 2.434 4+ 0.075, 2.408 + 0.075, 4.601 & 0.011.
Critical exponents «, 3,6 for 322 lattice found to be —0.12 £ 0.07,0.45 £ 0.26,33.4 = 2.3. To
further improve the simulation, more advanced algorithm and further vectorization are required

to boost statistics and reach larger lattice size. (Word count: 2968)

Contents

1 Introduction

2 Analysis

3 Implementation
3.1 2D lattice

3.2 3D lattice

4 2D Lattice Results
4.1 Equilibrium Time
4.1.1 Rough Estimate,t. . . .

4.1.2 Decorrelation Time, 7,

4.2 Critical Temperature
4.3 Specific Heat and Magnetic Susceptibility
4.4 Critical Exponentso
4.41 Evaluationof avo
4.4.2 Evaluation of B
4.4.3 Evaluationof
4.5 Finite Size Scaling L
4.5.1 Statement 1 L
4.5.2 Statement 2 e

5 3D Lattice Results
5.1 Decorrelation Time
5.2 Critical Temperature

5.3 Specific Heat and Susceptibility

6 Discussion

10

10

10

12

13

14

17

17

17

18

19

19

19

21

21

21

22

24

1 Introduction

Ising model is a simple model that describes phase transition and critical behaviors of a ferromag-
netic system. An infinite lattice, coupled to a heat bath, is set up in arbitrary integer dimension

(i.e. 2D, 3D) with one spin on each lattice site, as illustrated in Figure 1.

(7

[LSS

| | v | v

Figure 1: Schematic illustration of 2D Ising model, reprinted from [5]

Energy of the system is
E= —JZsisj —,uHZsi
(ig) i
where s; is the i*" spin, (ij) summing over nearest neighbors, J the interaction energy between
neighboring spins, u magnetic moment and H external field. The negative sign suggests a
preference of spin alignment, but the coupling to heat bath gives a possibility of eikABiET for
anti-alignment, where AFE is the energy difference between alignment and anti-alignment state.

Ising model predicts alignment below critical temperature T, and no overall alignment above 7.

[2]

To study critical behaviors, the earliest attempt is to use mean field theory (MFT) where one

can implicitly solve (s), average spin, from the energy expression, giving
(s) = tanh (zJ(s)/kpT)

where z is no. of nearest neighbor. [2] For 2D case, z = 4. One can be solved by python root
finder and a plot of (s) vs temperature is given in Figure 2. Writing temperature in unit of

kBLT, one can easily read from the graph that T, = 4, which is incorrect - 2D analytic solution is

2
TC - ln(l-‘r\/i)’
above T,, the quantitative detail is wrong. This result reveals the limitation of MFT, inevitably

~ 2.269. Although we do see the right aligning behavior qualitatively below and

leading us to numerical simulation for quantitative understanding. Therefore, this project is pro-
posed to illustrate how computational power helps physics understanding, to explore its potential

and limitation.

In this project, 2D and 3D Ising models are simulated over small lattices with Metropolis al-

gorithm and periodic boundary condition explained in [1] and lectures. All tasks in [1] are

Average spin <s> vs. temperature

= = =2 [y
= =] =) (=}

Average spin <s5>

=
P

0o

1 2 3 4 5 & 7 8
TEmperature/()/k_B)

Figure 2: Mean field theory solution: average spin vs temperature

covered but grouped differently and supplemented to better illustrate the reasoning behind this
project. In the rest of this report, temperature is given in the unit of é Section 2 establishes the
scope of this project through analysis. Section 3 explains the implementation and performance
of this project. Section 4 and 5 present 2D and 3D results respectively, with Section 6 discussing

challenges and potential improvements.

2 Analysis

Ising model, as explained in Section 1, describes the phase transition and critical behaviors of a
ferromagnetic system at its critical temperature, under the assumption of an infinite lattice and
system equilibrium. The model falls under a broader picture of general phase transitions, where
transitions are classified as different universal classes characterised by their critical components.

Therefore, for a lattice of size N x N, one may be interested in:

1. Finding the critical temperature, T, since this marks the point of significant changes. T,

can be found by plotting averaged total magnetisation per spin, <]Z\‘,42> , against temperature
in equilibrium state. Ising model predicts a non-zero %@ below T, and zero otherwise.

Therefore, T, is equal to the temperature where %{2) first drops to 0.

2. Investigating the critical behaviors of the system - either thermal or magnetic in nature,
manifesting themselves as divergence of specific heat, C, and magnetic susceptibility,

x. Both are given by fluctuation-dissipation theorem:

(AE? _ (AM)?

T2 X T

where (AE)? and (AM)? are the variance of total energy and magnetisation. Therefore,

C =

one can plot C per spin and x per spin against T to observe if the critical divergence peak
occurs. Also, the position of peaks give an independent estimation of critical temperature,

which can be used to verify the result from 1.

3. Computing critical exponents, since they are the parameters that characterize a universal

class. The critical exponents «, 3,J are given as:
Cx(T,-T)*, Mx(T,-T)’, MxH?

for T close to and below T.. Only in the last relation is H turned on. One can run linear

regression with C and M data to find the critical exponents.

For all the topics of interests listed above, numerical result is obtained and compared to analytical
solutions in infinite lattice limit. For a 2D system, the analytic solutions are tabulated in Table
1:

Physical Quantity — Analytic Prediction as N — oo

2 ~
T. m(N 2.269)
« 0
B 3
0 15

Table 1: Analytical solutions for infinite 2D lattice.

Since Ising model assumes equilibrium state and infinite lattice size, working with finite lattice

simulations raises two concerns:

1. Equilibrium time, ¢, - one needs to know how many Monte-carlo (MC) time steps are
required for the system to reach equilibrium, and all the investigation should be based on
data coming after t.. t. can be either roughly estimated by computing how many steps
are required for magnetisation per spin to first fall within 1o from its equilibrium value, or
more quantitatively estimated by calculating decorrelation time,r. (see Section 3). Once
found, t. or 7. determines the total MC steps required - it shall be much larger than ¢,
and 7, , but within an acceptable numerical cost (having a sensible runtime). Besides, the
phenomenon of critical slow down is also expected: t. and 7, peaking at T,, due to the

large statistical fluctuation near critical point.

2. Finite size scaling - This describes how the finite size of lattice affects the result. One
direct consequence of a finite lattice is that, unlike an infinite lattice, C and y do NOT
diverge at T, - they peak instead. Finite size scaling can be formulated in a variety of ways,

among which two are presented:
To(N) = Te(oo) + aN~—Yv (1)

Crnae/N? ~ log N 2)

where a and are constants. C,,ax is the specific heat at critical temperature. They can
both be examined with simulation data and linear regression. To perform linear regression,

v is assumed to its analytical value: v = 1. [2]

The nature of equilibrium time problem means the relevant investigations must be conducted
before simulating the equilibrium scenarios. Therefore, it is studied first to guide the rest of the

project.

The full simulation is only performed for 2D lattice. For 3D lattice, only some of the main

properties are studied to form a comparison with [4] for illustrative purpose.

3 Implementation

3.1 2D lattice

Lattices mainly involved in this study are with size 162,322,64%2. The complete analysis of 2D

lattice includes:

1. Determine ¢, and 7. Study how they vary with lattice size and temperature.

te, a rough estimate, is given by finding the number of MC time steps required for M
per spin to first fall within 1o from equilibrium state. The entire lattice is swept for 150
MC steps, then M per spin is plotted against MC time for temperature between 0.5 - 10.
8 independent estimates are performed at each temperature. Their average and standard
deviation are reported as the equilibrium time estimate and associated error. This analysis

is repeated for all three lattice sizes.

The quantitative estimate is based on autocovariance and decorrelation time. Autoco-
variance is defined as
A(r) = (M'(t)M'(t + 7))

where () means ’average over a long MC time’, and
M' =M — (M)

Define autocorrelation as

a(r) = A(7)/A(0)
and decorrelation time, 7., as the time at which

1

a(te) = =
The definition of tau, is self-explanatory - it tells how long the system needs to become in-
dependent from its initial setting, that is, the time required to ’settle down’ in equilibrium.
For temperature between 1.5 - 3.5 unit, 8 independent estimates of 7. are performed at each
temperature over 300 MC time. Their average and standard deviation are reported as the

T, result and associated error. This analysis is repeated for all the three lattice sizes.

Notice that the different temperature ranges in the above two routines are proposed in-
tentionally: the rough estimate t. pictures the overall trend of temperature dependence,
while the quantitative estimate 7, pins the position of the peak to prevent underestimation
of equilibrium time. An overall result is given by combining the two results for further

guidance.

2. Estimate critical temperature.

Magnetisation per spin is recorded over 200 MC time and (M) per spin is found. For
each temperature between 0.5 - 5 unit, 8 such independent estimates are obtained and aver-
aged. (M) per spin is plotted against temperature to read off T,.. This analysis is performed

for all three lattice sizes for comparison.

3. Simulate thermal/magnetic critical behaviors.

Study how C per spin and x per spin varies with temperature.

C per spin and x per spin are evaluated as stated in Section 2 for temperature between
1.5 - 3.5 unit over 300 MC steps on all three lattices. For each temperature, 5 independent
simulations are performed and averaged. Then the averaged C per spin and y per spin
are plotted against temperature. Critical temperature is found by reading the position of
peaks. The temperature range is deliberately set so to achieve a finer bin size hence higher
accuracy of the critical temperature. This analysis improves the precision of critical tem-

perature result based on the previous rough estimate and exemplifies critical behaviors.

4. Find critical exponents.

The methodology of this section is fairly straightforward - one just find the critical ex-
ponents by taking logarithm and perform linear regression. 322 lattice is used. See the

details in Section 4.

5. Finite size scaling.

The two statements in Section 2 are studied using linear regression. Lattice size N is
varied between 5 and 65, while temperature is varied between 2.15 - 2.35 unit (using an
extremely narrow window to precisely probe the position of peak). For each temperature,

3 independent trials are conducted and averaged over 300 MC time.

3.2 3D lattice

To extend the code to 3D scenario, one adds two more nearest neighbors. 162 lattice is used. The

simulations performed are:

1. Decorrelation time evaluation.
2. Critical temperature estimation.

3. Critical behaviors simulation (C and x)

Performance To maximize the efficiency and readability, all the physics details are encoded

in functions that only take configuration parameters as input argument. This allows the same

functions to be easily adapted for different tasks, and users who do not know all the background
physics can also make use of them - they only need to know what parameters are required. The

codes are vectorized as much as possible. Performance of tasks are summarised in Table 2:

Task Typical runtime/min (Google Colab)
2D 162 0.83

2D 322 5

2D 642 20

a, 3,6 5

finite size scaling 15

3D 7, 20

3D T,
3D C, x 5

Table 2: Typical runtime for tasks. The 2D tasks refer to tasks
performed from Section 4.1 to 4.3 - due to the similar code structure,

they share similar run time.

4 2D Lattice Results

4.1 Equilibrium Time

4.1.1 Rough Estimate,t,

te is computed for different lattice sizes, and its temperature dependence is studied. One would
expect a sharp peak at T, where the statistical fluctuation is significant and otherwise constant.

(te) vs. temperature plots for 162, 322, 642 lattices are given in Figure 3. The reported estimation

for (t.) and associated error is tabulated.

%guwlibrium time estimation: T_e vs Temperature, lattice 1672 Equilibrium time estimation: T_e vs Temperature, lattice 3272

1 40

]

Equilibrium Time T_e
=]
Equilibrium Time T_e

]

=
5 & il
= ra
= =]

wn

=

2 4 6 8 10 2 4 B -] 10
Temperature/()/k_B) Temperature/()/k_B)

Equilibrium time estimation: T_e vs Temperature, lattice 64°2

40

g‘

Equilibrium Time T_e
I
B

—
=1

=)

2 4 & B 10
TEmperature/{]fk_B)

Figure 3: Equilibrium time, as defined in Section 2, is computed and

plotted against temperature for latticel62, 322, 642.

Lattice size Equilibrium Time ¢, (% frac.)

162 20.74+7.7 (37.2%)
322 41.1+14.7 (35.6%)
642 15.946.5 (40.9%)

Table 3: Equilibrium time reported for the three lattices.

The overall temperature dependence of t. is as expected, sharply peaking at critical temperature.
From the table, one may approximate the equilibrium time to be at order = O(50). Several

features are noticeable:

10

1. All of the three lattices have t. peaking at temperature around 2.5, which is close to On-

sager’s analytic result for critical temperature of an infinite lattice T, ~ 2.2692.

2. The three estimated t. are all within 1o from each other, showing consistency. However, all
of the results have statistical uncertainty comparable to their values, which suggests that
this analysis is merely a rough estimate that serves no more than establishing the order of

magnitude for equilibrium time.

3. A peculiar rise in t, is seen above critical temperature, and the slope appears to increase
with lattice size. This is most likely a lattice artifact that is related to both temperature
and lattice size. To investigate the nature of this artifact, magnetisation per spin is plotted

against MC time and the following comparisons are made based on controlling variables:

e Comparison between below and above T, lattice size held constant.

e Comparison between different lattice sizes, temperature held constant above critical

temperature.

Magnetisation per spin vs MC time at T=1.5, lattice 64°2

Magnetisation per spin vs MC time at T=6, |attice 6472

14 100

0.75

=
ra

050

0.25

=
15}
Magnetisation per spin

0.00

-025

=
=

Magnetisation per spin

—-0.50

=
=

=075

o 10 20 30 40 50 &0 o 10 20 30 40 50 60
MC Time MC Time

Figure 4: Lattice artifact investigation: M vs MC time at T'= 1.5 and
T = 6, while lattice size held constant = 642

Magnetisation per spin vs MC time at T=6, |attice 16°2

Magnetisation per spin vs MC time at T=6, |attice 64”2

100

=
=

075

—
"

Magnetisation per spin
=
=
Magnetisation per spin

050

0.25

0.00

-0.25

=
o

-0.50

06 -0.75

0 10 0 0 40 50 &0 0 10 0 0 0 50 &0
MC Time MC Time

Figure 5: Lattice artifact investigation: M vs MC time with lattice

size 162 and 642, while temperature held constant at 7' = 6.

Figure 4 indicates that the rise in t. above critical temperature is due to oscillation in magneti-
sation per spin, which is more likely to occur at high temperature where the system has enough
energy to drive upon. Figure 5 verifies the trend seen in Figure 3, where t, grows more rapidly

as the lattice size increases.

11

In brief, this analysis semi-quantitatively illustrates the phenomenon of critical slow down. It
suggests a rough estimate for equilibrium time at O(50), and the unexpected rising beyond T,
might suggest that larger lattice takes more time to reach equilibrium - which is sensible physically

since more spins are involved.

4.1.2 Decorrelation Time, 7,

T is evaluated as a quantitative supplement and T, is estimated. Results are obtained for all

three lattices:

Decorrelation time r_e vs temperature for lattice 16”2 Decorrelation time r_e vs temperature for lattice 3272

. a0 .
» .
. 35
.
" 5 o 30
E E
c s
g% £ .
= B a0
gs - E .
I+ L
&1 . . a
10
5 . 5 ¢
®e . .
0....0 LI plesee® Seone
150 175 200 225 250 275 300 325 350 150 175 200 225 250 275 300 325 350

TEmperature/i|fk_B)

TEmperature/{|/k_B)

Decorrelation time r_e vs temperature for lattice 6472
(]

Decorrelation time

150 175 200 225 250 275 300

Emperature/(/k_B)

325 350

Figure 6: Decorrelation time is computed and plotted against

temperature for latticel62, 322, 642.

Lattice size Decorrelation Time 7. (% frac.) Critical temperature T,

162 33.1£9.9 (29.9%) 2.23640.105
322 40.348.3 (20.6%) 2.342+0.105
64> 43.84+4.4 (10.0%) 2.34240.105

Table 4: Reported decorrelation time and critical temperature for

lattice 162,322,642, Fractional errors are included in the bracket.

The decorrelation time 7, results display the same critical peaks as equilibrium time t., a sign of

critical slow down. Data suggests that:

1. Critical peak for 162 lattice is less well-defined than the larger lattices, indicating a larger

12

statistical uncertainty on each data point. This is a manifestation of finite size effect, and

the compromise of accuracy must be acknowledged.

2. The decorrelation times are at O(50) as well, consistent with the previous conclusion for t,.
However, the fractional errors in 7, are 10% smaller than those in t., suggesting 7. a better
quantitative indicator. Besides, extending the temperature to far beyond T, 7. stabilizes

rather than rising like t.:

Decorrelation time r_e vs temperature for lattice 3272
(]

Decorrelation time
5 G B K &8 &

w

2 4 B 8 10
TEemperature/()/k_B)
Figure 7: Decorrelation time vs temperature, extended beyond T.

The peculiar rise in 7, is not seen.

3. The reported T, values are consistent with each other, and they are all within 1o from On-
sager’s analytical result for infinite lattice, validating the simulation. Critical temperature
appears to increase with lattice size, nevertheless it is not conclusive yet at this stage where

only three lattice sizes are studied.

From the investigation of ¢, and 7, it is concluded that:

1. Time required for the system to reach equilibrium is at order O(50). Therefore, in the
subsequent studies lattices are either swept for 200 or 300 MC time steps to equilibrate the
system under allowed computational time. Equilibrium state quantities such as magnetisa-

tion/energy per spin are computed only from data after 100 MC steps.

2. Critical temperature of lattice with total number of spin at O(10?) (lattice 162) and O(103)
(lattice 322,642) agrees with Onsager’s result within a deviation of O(1071). It validates

the simulation, but also foreshadows the high precision required to study finite size scaling.

4.2 Critical Temperature

An independent estimation of T is obtained by finding the temperature where %@ at equilibrium

goes to zero. Equilibrium state magnetisation per spin is plotted against temperature for all lattice

sizes, and T, results are tabulated:

13

Magnetisation per spin vs Temperature: lattice 162 Magnetisation per spin vs Temperature: lattice 322

ww{esesee, W|ee0 e,
[]
. []

c 0.8 c 08
= &
o &
o i
g 0s 8 06
c E
= 2
w o
504 £ 04
o o
=4 =4
& &
£ 2

0.2 02 .

LI -
0.0 e ?oe oo 00 RN NN
1 2 3 4 5 1 2 3 4 5
Emperature/(|/k_B) Temperature/()/k_B)

Magnetisation per spin vs Temperature: lattice 6472

101 e e e

0.8

06

0.4

Magnetisation per spin

0z
[)

0.0 e O a8 a0 000

1 2 3 4 5
TEemperature/{|/_B)

Figure 8: Magnetisation per spin ((averaged in equilibrium state) is

computed and plotted against temperature for lattice 162,322, 642.

Lattice size Critical temperature T,

162 2.39540.237
3922 2.6324+0.237
642 2.632+0.237

Table 5: Critical temperature for lattice 162, 322, 642.

The plots show trend as expected from Ising Model: Averaged magnetisation per spin, %42), is

non-zero below T, due to symmetry breaking and varnishes above T,.. The critical temperatures
obtained for three lattices are in agreement with each other within 1o, and they are consistent
with the previous results. Behaviors above critical temperature is stable with no peculiar rise

observed since (M) is evaluated strictly in non-oscillatory region.

4.3 Specific Heat and Magnetic Susceptibility

Since specific heat is calculated from the variance of energy, it is important to verify the computa-
tion of energy is correct. For this purpose, energy per spin is computed for temperature in [0.5, 5]

for 322 lattice. Energy per spin vs. temperature plot is made and compared to [2] in Figure 9.

As explained in [2], Ising model predicts energy per spin below T, to be -2 when temperature is

represented in unit of J/kp, and rises to 0 at high temperature since spin will be randomly

14

Ising model Monte Carlo
— T

0r
. . 10x10 lattice
Energy per spin vs Temperature: lattice 3272 Cxidlattica
04 . ® _ Energy versus Temperature o . ®
. .
-06 . * c .
L] i .
L]

-0.8 . s -
= . o 4 e
§ -1.0 = 0
I o
g 12 .) 8
. =
214 - o
&

-16 * ®

0

-18 . [— J

20le oo ® Wl e %G ¢

-2 . ‘ . . : 0 1 2 3 4 5

1 2 3 4 5 Temperature

TEmperature/(J/k_B)

Figure 9: (left) Energy per spin vs temperature for 322 lattice, obtained
in this project. (right) Energy per spin vs temperature for 10? lattice,

reprinted from [2].

oriented. The plot obtained in this project is consistent with the one in [2]: both show the
correct energy of -2 below T, rising to -0.4 at T" = 5 which is far from 0. The deviation from 0
in high temperature limit indicates orientation of spins is not random, even when the
magnetisation averaged to zero. This correlation in orientation among spins turns out to be an

important subject of interests. (See [2])

As energy evaluation is validated, temperature dependence of specific heat per spin and magnetic
susceptibility per spin for all three lattices is plotted in Figure 10, 11 with 7, obtained from both
quantities tabulated in Table 6:

Specific heat per spin vs temperature: lattice 162 Specific heat per spin vs temperature: lattice 32°2
10 . .
.
40
w08 . RS .
= E
= 2 30
o - o
306 b4 &5 .
i . [°
£ . <20 . L]
£ pa . S
g . g1 . ‘.
e . .. W . ®e -
02 ° ®es o . e
° LY [] L
. 05 ®
T T T T T T T T T T T T T T T T T T
150 175 200 225 250 275 300 325 350 150 175 200 225 250 275 300 325 350
TEmperaturefij/k_B) Temperature/{|fk_B)
Specific heat per spin vs temperature: lattice 6472
18 4 .

Specific heat per spin/k_B
o

E oom B R E R
o

L]

(]

.
.

[N}
L]
L]

T T T T T T T
150 175 200 225 250 275 300 325 350
Emperature/{/k_B)

Figure 10: Specific heat per spin vs temperature for lattice
162,322, 642

15

Susceptibility per spin/k_B

Susceptibility per spin vs temperature: lattice 16°2

Susceptibility per spin vs temperature: lattice 322

5 6 B KB OB

Susceptibility per spin/k_B

wn

20 25 30 i5

TEemperature/()/k_B)

10 15

40

10 15 20 25 30

Temperature/ijfk_B)

Susceptibility per spin vs temperature: lattice 6472

35

40

- o
15]] i

Susceptibility per spin/k_B

v

(=]

10 15 20

25

30

Temperature/{)/k_B)

Figure 11: Magnetic susceptibility per spin vs temperature for lattice
162,322, 642.

Lattice size

Specific Heat T, Magnetic Susceptibility T,

162 2.342+0.105 2.263+0.105
322 2.342+0.105 2.421+£0.105
642 2.237£0.105 2.421+£0.105

Table 6: T, estimation from specific heat and magnetic susceptibility
for lattice 162,322, 642.

Features of data include:

1. The temperature dependence of C per spin and x per spin agrees with Ising model, showing

critical divergence. Peak width appears to have a weak dependence on lattice size. However,

susceptibility peak are sharper than specific heat peak.

and the tabulated data. In Figure 10, C peak shifts leftward as lattice size increases while
in Figure 11 x peak shifts rightward, which is confirmed by Table 6 where specific heat T,
estimation decreases as lattice size grows while magnetic susceptibility T, estimation shows

an opposite trend. With only three lattices and limited data resolution, one cannot yet

A subtle disagreement in lattice size dependence of T, can be observed from both the plots

reach a conclusive claim. This will be discussed in Section 6.

3. Results in Table 4 are consistent with each other and previous results within 1o.

16

4.4 Critical Exponents
4.4.1 Evaluation of «

Since « is expected to be 0 for infinite lattice [2], specific heat shall be a constant and doesn’t
depend on reduced temperature ¢t = T, — T near T,.. Therefore, specific heat is plotted against

reduced temperature t for 322 lattice close to T, as shown below:

Specific heat vs reduced temperature

2100
2000
1900

L
1800 . .

Specific Heat

1700 .
1600 .,

1500

0025 0030 0035 0040 0.045 0050 0.055 0060
Hlk_B)

Figure 12: Specific heat vs reduced temperature t for 322 lattice.

Figure 12 indeed shows a constant trend with a large scattering about C' = 1700. Linear
regression is performed between In(specific heat) and In(t). « is found to be —0.12 4 0.07,
showing a 20 difference from that of an infinite lattice. This is a manifestation of finite size

scaling.

4.4.2 Evaluation of

B is expected to be 0.125 for infinite lattice. To obtain S, one plots In(Magnetisation) against

In(t) and performs linear regression, shown in Figure 13:

In(Magnetisation) vs In(t)

-
IS

=
[

o
=)

In{Magnetisation)
noon
@ @
L]

wn
-

wn
[N

-38 3.6 -34 -32 3.0 -2.8
Init)

Figure 13: In(Magnetisation) vs In(reduced temperature) for 322

lattice.

A general linear trend can be seen despite several outliers. Linear regression reports 5 value of

17

0.45 4+ 0.26, suspending a 1.2¢ difference from that of infinite lattice, another sign of finite size

effect.

4.4.3 Evaluation of ¢

0 is the critical component that links magnetisation of the ferromagnetic system to external
magnetic field. Such dependence manifests itself as ’hysteresis’: contrary to other magnetic
systems where magnetisation varnishes when external field is off, ferromagnet has a remnant
magnetisation at the absence of the field below T,. Before computing J, such phenomenon is first
simulated and observed. (M) per spin is plotted against external field for temperature below and

above T, on 322 lattice, shown as below:

Magnetisation per spin vs external field at T=1.1 Magnetisation per spin vs external field at T=5
100 00000 OORRROOOES 100
e®
075 0.75 .
-
g 050 £ o050 .
& &
o o
T 025 I 025 .
c c
£ 000 £ ooo
.
T -0.25 T 025
£ 5
= =3
£ 050 2 -050 .
075 075 °
L]
ee®
-100 { seeesseesssees ~100 | eveeede
—4 -2] 2 4 -4 -2 0 2 4
External field/T External field/T

Figure 14: Hysteresis: (M) per spin vs external field strength on 322
lattice for T=1.1 (below T;) and T= 5 (above T¢)

Hysteresis is observed as expected. Toward the two ends of plot, magnetisation saturates as the
spins fully align. At H = 0, above T, magnetisation per spin varnishes, while below T, a

discontinuous jump is seen, indicating remnant magnetisation.

§ is expected to be 15 for infinite lattice. At T,. (=~ 2.34 for 322 lattice), § is evaluated by

performing linear regression on In(M) and In(H). Result is shown Figure 15:

Critical component delta: In{Magnetisation) vs In{H)

-06 -0.4 -0.2 00 02 0.4

Figure 15: Critical exponent ¢: In(Magnetisation) vs In(external field)
with fitting.

18

From Figure 15, the linearity is evident. Reported ¢ is 33.4 4 2.3, significantly deviating from
that of infinite lattice.

4.5 Finite Size Scaling

4.5.1 Statement 1

As explained in Section 2, Equation (1) is examined with simulation. Assuming v = 1, T, is

plotted against % and linear regression is performed, shown in Figure 16:

Critical temperature vs 1/N

12 oo
231
E‘I
=230
229
228
227

226

Critical Temperaturaf{

225

224

0025 0050 0075 0100 0125 0150 0175 0.200
N

Figure 16: Finite size scaling: Critical temperature vs %, best fit line

is added onto data points.

On the plot, data falls in a rough linear trend with large scattering about the fitted line,
suggesting large statistical uncertainties. This is confirmed by the linear regression with r value

reported as -0.602. Numerical result reported gives Ti.(o0) = 2.298 + 0.171, consistent with the
expected analytic value T,.(00) & 2.269.

4.5.2 Statement 2

Equation (2) is examined by simulation, and a linear regression is performed between specific

heat per spin at T, and In (Lattice size, N), shown in Figure 17. The slope is expected to be 1.
A moderate linearity is observed with data scattering about the linear fit, r value reported to be

0.677. Slope is reported to be 0.284 + 0.138, deviating significantly from expected value (=1).

This consistency might be due to low sample size. Potential remedy is discussed in Section 6.

19

Specific heat per spin at T_c vs In(lattice size, N)

g
i

e
5]

g
=]

=
o

Specific heat per spin at T _c
-
@

[
o

=
5]
L]

T T T T
15 20 25 30 35 40
In{lattice size, N}

Figure 17: Finite size scaling: Specific heat per spin at T, vs
In(Lattice size, N), best fit line is added onto data points.

20

5 3D Lattice Results

5.1 Decorrelation Time

Decorrelation time is evaluated on 163 lattice similarly as in Section 4.1.2. Result is shown below:

Decorrelation time r_e vs temperature for lattice 163
00 -

175

150

125

100

75

Decorrelation time

5.0
]

25 *
] o .
[BN BN B BN [BN BN BN BN BN BN BN BN N]

2 4 6 8 10
TEemperature/()/k_B)

Figure 18: Decorrelation time vs temperature for 163 lattice.

Critical slow down is observed as expected. It is concluded that the decorrelation time is at
0(20), hence 200 - 300 MC time steps are sufficient to set the system in equilibrium.
5.2 Critical Temperature

Magnetisation per spin %42) at equilibrium state is plotted against temperature to estimate 7.

Result is compared to a recent study [4], as shown in Figure 19 :

Magnetisation per spin vs Temperature: lattice 16”3

1= [7

10 E E

* *] E

5 083 A Lattice 1503 ——— 3

L El + Lattice 2003 A a4 |

£ ° 07 Lattice 2503 » 3 3 | =

A 6 [] 3 E|

g £ E

_5 4 E 05 —; 3

: .. ‘ 3
= = u|

g > 053 * E

2 ©,8,% 0500000000 00000 0000 8 02 ¢ =

L] E| & E|

014 E

_2 =]

o ° “owssnos 4 3

2 3 3 5 6 7 B ! SUARERN ‘ ‘ ‘
3 35 4 45 5 55 6
Temperature/()ik_B) Temperature (KJ/T

Figure 19: (left) Magnetisation per spin vs temperature at
equilibrium state for 16 lattice, obtained in this project. (right)
Same plot on 150%,200%, 2503 lattice obtain in [4], reprinted.

21

T, reported in this simulation is 4.816 £ 0.133. On Figure 19, both plots show similar trend that
agrees with theoretical prediction, and in both cases magnetisation per spin drops to zero at

critical temperature = 4.5.

It is noticeable that 16 lattice plot (left) overshoots into negative magnetisation, while larger
lattices don’t. This can be attributed to a much larger statistical uncertainty for this study: small
lattice size contributes to finite size effect, and a relatively small MC time span limits the quality
of statistics. Only 200 sweeps are performed in this study, contrary to the quoted study [4] where

10000 sweeps are performed - 50 times larger sample size.)

The result T, = 4.816 £ 0.133 is compared to a study in 2000 [3] which gives T, = 4.515 4+ 0.025,
showing 20 tension. However, since [3] has additional implementation of Wolff dynamics and
the statistics is 5 times larger, discrepancy is possible as an artifact of different computational

configurations.

5.3 Specific Heat and Susceptibility

Specific heat per spin and magnetic susceptibility per spin are plotted against temperature for

163 lattice and compared to [4] result, shown in Figure 20. Features of plots include:

e All plots show critical slow down as expected. In 3D case, specific heat peak is wider than

susceptibility peak just as 2D case discussed in Section 4.3.

e Susceptibility plot obtained in this study is consistent with that from [4], both peaking at
T. ~4.5.

e An evident asymmetry is observed from the different sides of specific heat peak. Specific
heat appears to decay faster above T, than below T,.. The origin of this asymmetry is likely

a lattice artifact and needs to be confirm by further study.

e Specific heat peak reports T, = 4.448+0.103. Susceptibility peak reports T, = 4.538+0.077.
They agree much better with [3], perfectly within 1o tension. This potentially suggests that

it is more precise to use critical divergence peak for T, determination than using (M).

22

] i <]

-
o]

=
=

Specific heat per spin/k_B

Specific heat per spin vs temperature: lattice 1673

Susceptibility per spin vs tem

perature: lattice 1673

° 140 .
- L 120 .
L ol
* £ 100
g
¢ il
-* 2
. Z
. B
. ** = .
L] I
*® @ .
*e " . '
™ o
oo eee

*%%00e0e 0] sesscescscsccese®® LU LT

.

30 35 40 a5 50 55 60 30 35 40 45 50 55 60

Temperature/()/k_B)

0.005 . .

Temperature/{|fk_B)

°
8
2

Magnetic Susceptibility
g

o
8

v b b b b iy

°

w
w
o

4
Temperature (K5J/T)

Lattice 1503 ———

Lattice 2003 4 4 &
Lattice 2503 4 4 »

Lo b by Ly

45 5 55 6

Figure 20: (up left) Specific heat per spin vs temperature at

equilibrium state for 16 lattice, obtained in this project. (up right)

Susceptibility per spin vs temperature at equilibrium state for 163

lattice, obtained in this project. (bottom) Susceptibility plot on
1503, 2003, 2502 lattice obtain in [4], reprinted. Only the

magnetisation plot is given by [4].

23

6 Discussion

Results from Section 5 are summarized in Table 7, 8, and 9 :

Lattice size Decorrelation Time 7. Magnetisation T, Specific Heat T, Magnetic Susceptibility 7. Combined Result T

162 2.236+0.105 2.3954+0.237 2.34240.105 2.26340.105 2.30940.075
322 2.342+0.105 2.632+0.237 2.342+0.105 2.42140.105 2.43440.075
642 2.3424+0.105 2.6324+0.237 2.2374+0.105 2.42140.105 2.40840.075

Table 7: T, results summary for 2D lattices. A combined result is
given for each lattice size by averaging all results obtained with

uncertainties added in quadrature.

Lattice size Magnetisation T, Specific Heat T, Magnetic Susceptibility 7, Combined Result T,

162 4.816+0.133 4.4484+0.103 4.538+0.077 4.601+0.011

Table 8: T, results summary for 3D lattices. A combined result is
given for lattice 163 by averaging all results obtained with

uncertainties added in quadrature.

Lattice size « I} 1)
322 -0.12+0.07 0.45+0.26 33.4+2.3
00 0 0.125 15

Table 9: 2D critical components computed on 322 lattice and their

expected values for infinite lattice (shown in the bottom row).

The main challenge faced by this study is rooted in the vectorization of codes. Despite heavy
efforts to vectorize, a considerable number of loops is still required, bringing up computational cost

hence limiting the available number of sweeps (MC time steps), number of independent trials,
data spacing and size of lattice. The first three limitations introduces statistical uncertainty

exemplified by:
e the wide, fuzzy shape of 2D and 3D specific heat peaks

e significant scattering in «, 3, d regression plots

e significant scattering in both finite size scaling investigations

Since total number of loops performed depends on number of lattice sites, the size of lattice
must be compromised to ensure enough sweeps are performed for system equilibrium, giving 642
as the limit for 2D case and 162 for 3D cases in this project, while ideally lattices at much larger
order of magnitude shall also be studied. The limitation in lattice size, along with the other

limitations, indicates the following questions cannot be conclusively addressed by this project:

24

e how 7, varies with lattice size

why specific heat peak and x peak shift oppositely as lattice size increases

inconsistency in finite size scaling Statement 2 result

origin of the asymmetry in 3D specific peak

Further improvements to this study shall focus on vectorizing the codes and improving the al-
gorithm. Ideally, lattice size shall be boosted to 1282,2562 etc, with available MC time steps
increased to > 1000 steps, temperature data spacing reduced to O(10~2). This shall improve the

statistics and bring clarity to the puzzles unsolved yet.

25

References

[1] David Buscher. 2021.

[2] Nicholas J Giordano and Hisao Nakanishi. In: Computational Physics. Pearson Education,
1997, pp. 235-264.

[3] Peter J Meyer. “Computational Studies of Pure and Dilute Spin Models”. PhD thesis. Her-
metic Systems website, 2000, pp. 19-19.

[4] A F Sonsin et al. “Computational Analysis of 3D Ising Model Using Metropolis Algorithms”.
In: Journal of Physics: Conference Series 630 (July 2015), p. 012057. pDOI: 10.1088/1742~
6596/630/1/012057. URL: https://doi.org/10.1088/1742-6596/630/1/012057.

[6] Sascha Wald. “Thermalisation and Relaxation of Quantum Systems”. PhD thesis. Sept. 2017.
DOIL: 10.13140/RG.2.2.25169.63842.

(Word count: 2968)

26

https://doi.org/10.1088/1742-6596/630/1/012057
https://doi.org/10.1088/1742-6596/630/1/012057
https://doi.org/10.1088/1742-6596/630/1/012057
https://doi.org/10.13140/RG.2.2.25169.63842

Appendix

The codes are directly exported from Google Colab, hence might be subjected to formatting issue.

To run the code, please find the .ipynb file attached on TiS and open it in Google Colab.

—-*- coding: utf-8 -*-
"""Ising_final.ipynb

Automatically generated by Colaboratory.

Original file is located at

https://colab.research.google.com/drive/14ShyGxfBBZNBNq-nKggnk9XpqtRyg-sc
Part 1: MFT breaking down

##Task 1: wrong critical temperature

import numpy as np

import random as rd

from math import tanh,log

import matplotlib.pyplot as plt
from scipy.optimize import fsolve

from scipy import stats

T=np.linspace(0.5,8,200)
S=[1
for t in T:
def f(s):
return s-tanh(4*s/t)
s=fsolve(f,0.5)
S.append(s)

plt.plot(T,S)
plt.xlabel (' Temperature/(J/k_B)"')
plt.ylabel('Average spin <s>')
plt.title('Average spin <s> vs. temperature')

plt.show()

""nH#Part 2: 2D lattice

27

Task 1: Equilibrium time

Rough Estimate

16%16 lattice

import numpy as np
import random as rd
from math import exp,sqrt

import matplotlib.pyplot as plt

#parameter list
H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones ((N,N) ,dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2*lattice[i] [jl*(lattice[(i+1+N)%N] [jl+lattice [(i-1+N)¥N] [jl+latti
— cel[i] [(j+1+N)YN]+lattice [i] [(j-1+N)¥%N]+2*H)
if E_flip<=0:
lattice[i]l [jl=np.int(-lattice[i] [j1)
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i]l [j1=np.int(-lattice[i] [j])
else:

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

28

return M

def findtE(M,MC_Time):

g=len(M)-30
M_eq=np.mean(M[q:1)
std=np.std (M[q:])
for x in range(len(M)):

if np.abs(M[x]-M_eq)>std:

pass
else:

return x

#16x16

tt=[]
T=np.linspace(0.5,10,num=20)
MC_Time=np.linspace(0,150,num=150,dtype=int)
tt_err=[]
for t in T:
tE=[]
for x in range(8):
LAT=constrct_lattice(16)
M=[]
for y in range(150): #find M after 149 sweeps
M.append (findM(LAT,16))
LAT=sweep(LAT,16,t,H)
tE.append (findtE(M,MC_Time))
tE_f=[x for x in tE if x is not None]
tt.append(np.mean(tE_f))
tt_err.append(np.std(tE_f)sqrt(8))
#8 runs and find average
print ('Error on T_e at critical temperature
« is',tt_err[list(tt).index(np.max(tt))])
print ('Error on T_e in this study is at the order of',sqrt(np.sum([x**2 for x
— in tt_err])))
plt.plot(T,tt)
plt.title('Equilibrium time estimation: T_e vs Temperature, lattice 1672')
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Equilibrium Time T_e')
plt.ylim([0,40])

"UUEHH#32%32 lattice"""

29

import numpy as np
import random as rd
from math import exp,sqrt

import matplotlib.pyplot as plt

#parameter list

H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N) ,dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2*lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jl+latti
o ce[i] [(j+1+N)%N]+lattice[1i] [(j-1+N)%N]+2*H)
if E_flip<=0:
lattice[i] [j]l=np.int(-lattice[i] [j])
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [jl=np.int(-lattice[i] [j])
else:

pass
return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

return M

def findtE(M,MC_Time):
g=len(M)-30
M_eg=np.mean(M[q:1)
std=np.std(M[q:]1)

for x in range(len(M)):

30

if np.abs(M[x]-M_eq)>std:
pass
else:

return x

#3232

tt=[]
T=np.linspace(0.5,10,num=20)
MC_Time=np.linspace(0,150,num=150,dtype=int)
tt_err=[]
for t in T:
tE=[]
for x in range(8):
LAT=constrct_lattice(32)
M=[]
for y in range(150): #find M after 149 sweeps
M.append (findM(LAT,32))
LAT=sweep(LAT,32,t,H)
tE.append (findtE(M,MC_Time))
tE_f=[x for x in tE if x is not None]
tt.append(np.mean(tE_f))
tt_err.append(np.std(tE_f)/sqrt(8))
#8 runs and find average
print ('Error on T_e at critical temperature
— is',tt_err[list(tt).index(np.max(tt))])
print ('Error on T_e in this study is at the order of',sqrt(np.sum([x**2 for x
— in tt_err])))
plt.plot(T,tt)
plt.title('Equilibrium time estimation: T_e vs Temperature, lattice 3272')
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Equilibrium Time T_e')

" HHHHE64*64 lattice"""
import numpy as np
import random as rd

from math import exp,sqrt

import matplotlib.pyplot as plt

#parameter list
H=0

31

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2*lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jl+latti
o cel[i] [(j+1+N)%N]+lattice[1i] [(j-1+N)%N]+2*H)
if E_flip<=0:
latticel[i]l [jI1=np.int(-latticel[il[j1)
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i]l [j1=np.int(-latticel[i] [j])
else:

pass
return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np. sum(s0)

M=sum#/ (N**2)

return M

def findtE(M,MC_Time):

g=len(M)-30
M_eqg=np.mean(M[q:1)
std=np.std (M[q:]1)
for x in range(len(M)):

if np.abs(M[x]-M_eq)>std:

pass
else:

return x
#64*64
tt=[]

32

T=np.linspace(0.5,10,num=20)
MC_Time=np.linspace(0,150,num=150,dtype=int)
tt_err=[]
for t in T:
tE=[]
for x in range(8):
LAT=constrct_lattice(64)
M=[]
for y in range(150): #find M after 149 sweeps
M.append (findM(LAT,64))
LAT=sweep(LAT,64,t,H)
tE.append (findtE(M,MC_Time))
tE_f=[x for x in tE if x is not Nonel
tt.append(np.mean(tE_f))
tt_err.append(np.std(tE_f)sqrt(8))
#8 runs and find average
print ('Error on T_e at critical temperature
— is',tt_err[list(tt).index(np.max(tt))])
print ('Error on T_e in this study is at the order of',sqrt(np.sum([x**2 for x
— in tt_err])))
plt.plot(T,tt)
plt.title('Equilibrium time estimation: T_e vs Temperature, lattice 6472')
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Equilibrium Time T_e')

""i##Decorrelation time

####16%x16 lattice

import numpy as np
import random as rd
from math import exp

import matplotlib.pyplot as plt

#parameter list
H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N) ,dtype=int)

return 1

33

def sweep(lattice,N,T,H): #perform 1 complete sweep over a NxN lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2*lattice[i] [j]*(lattice[(i+1+N)%N] [jl+lattice [(i-1+N)¥N] [jl+latti
— cel[i] [(j+1+N)YN]+lattice [i] [(j-1+N)%N]+2*H)
if E_flip<=0:
lattice[i]l [jl=np.int(-latticel[i] [j]1)
else:
p=rd.random()
if p<=exp(-E_f1lip/T):
latticel[i] [j1=np.int(-latticel[i] [j])
else:

pass
return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

return M

def findAcov(M,tau): #find autocorelation
M_av=np.mean (M)
M_prime=[x-M_av for x in M]
t_tot=len(M)
A=np.mean([M_prime [x]*M_prime[x+tau] for x in range(t_tot-tau)])

return A

def findtau_e(M):
A0=findAcov(M,0)
for t in range(1,len(M)):
At=findAcov(M,t)
a=At/A0
if a>exp(-1):
pass
else:

return t

#16%16 lattice

34

T=np.linspace(1.5,3.5,20)
te=np.zeros((8,20))
for i in range(8):
for j in range(20):

M=[]

LAT=constrct_lattice(16)

for x in range(300):

LAT=sweep(LAT,16,T[j],H)
M.append (findM(LAT,16))

tel[i] [jl=findtau_e (M)
te_f=np.average(te,axis=0)
te_err=np.std(te,axis=0)
print('Critical temperature is found to be',T[list(te_f).index(np.max(te_£))])
print('Decorrelation time at critical temperature
< is',max(te_f),'+-',te_err[list(te_f).index(np.max(te_f))]1/sqrt(8))
plt.plot(T,te_f,'o")
plt.title('Decorrelation time r_e vs temperature for lattice 1672')
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Decorrelation time')
plt.show()

" EE32%32 lattice"""

import numpy as np
import random as rd
from math import exp

import matplotlib.pyplot as plt

#parameter list
H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones ((N,N) ,dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j]*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jl+latti
o cel[i] [(j+1+N)YN]+lattice [i] [(j-1+N)¥%N]+2xH)

35

if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j1)
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i]l [j1=np.int(-latticel[i] [j])
else:

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np . sum(s0)

M=sum#/ (N**2)

return M

def findAcov(M,tau): #find autocorelation
M_av=np.mean (M)
M_prime=[x-M_av for x in M]
t_tot=len(M)
A=np.mean([M_prime [x]*M_prime [x+tau] for x in range(t_tot-tau)])

return A

def findtau_e(M):
AO=findAcov(M,0)
for t in range(1,len(M)):
At=findAcov(M,t)
a=At/A0
if adexp(-1):
pass
else:

return t

#32%32 lattice

T=np.linspace(1.5,3.5,20)

te=np.zeros ((8,20))

for i in range(8):

for j in range(20):

M=[]
LAT=constrct_lattice(32)
for x in range(300):

36

LAT=sweep (LAT,32,T[j],H)
M.append (findM(LAT,32))
tel[i] [jl=findtau_e (M)

te_f=np.average(te,axis=0)
te_err=np.std(te,axis=0)
print('Critical temperature is found to be',T[list(te_f).index(np.max(te_£))])
print ('Decorrelation time at critical temperature
— is',max(te_f),'+-',te_err[list(te_f).index(np.max(te_£))]/sqrt(8))
plt.plot(T,te_f,'0o")
plt.title('Decorrelation time r_e vs temperature for lattice 3272')
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Decorrelation time')
plt.show()

"NUERRHG64*%64 lattice"""

import numpy as np
import random as rd
from math import exp,sqrt

import matplotlib.pyplot as plt

#parameter list

H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2#lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jl+latti
o cel[i] [(j+1+N)%N]+lattice[1] [(j—1+N)%N]+2*H)
if E_flip<=0:
lattice[i]l [jl=np.int(-latticel[i] [j1)
else:
p=rd.random()
if p<=exp(-E_f1lip/T):
latticel[i] [j1=np.int(-lattice[i] [j])

else:

37

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

return M

def findAcov(M,tau): #find autocorelation
M_av=np.mean (M)
M_prime=[x-M_av for x in M]
t_tot=len(M)
A=np.mean([M_prime [x]*M_prime[x+tau] for x in range(t_tot-tau)])

return A

def findtau_e(M):
AO=findAcov(M,0)
for t in range(1,len(M)):
At=findAcov(M,t)
a=At/A0
if a>exp(-1):
pass
else:

return t

#64*64 lattice
T=np.linspace(1.5,3.5,20)
te=np.zeros((8,20))
for i in range(8):
for j in range(20):
M=[]
LAT=constrct_lattice(64)
for x in range(300):
LAT=sweep(LAT,64,T[j],H)
M.append (findM(LAT,64))
tel[i] [jl=findtau_e (M)
te_f=np.average(te,axis=0)
te_err=np.std(te,axis=0)

print('Critical temperature is found to be',T[list(te_f).index(np.max(te_£))])

38

print ('Decorrelation time at critical temperature

— 1is',max(te_f),'+-',te_err[list(te_f).index(np.max(te_f))]1/sqrt(8))
plt.plot(T,te_f,'o")

plt.title('Decorrelation time r_e vs temperature for lattice 6472')
plt.xlabel('Temperature/(J/k_B)"')

plt.ylabel('Decorrelation time')

plt.show()

""UER##32%32 long range"""

import numpy as np
import random as rd
from math import exp

import matplotlib.pyplot as plt

#parameter list
H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N][jl+latti
o cel[i] [(j+1+N)YNI+lattice[i] [(j—-1+N)%N]+2*H)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j])
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [j1=np.int(-lattice[i] [j])
else:

pass
return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation

— such that when fully alligned M=+-1

39

sO=np.sum(lattice,axis=0)
sum=np. sum(s0)
M=sum#/ (N**2)

return M

def findAcov(M,tau): #find autocorelation
M_av=np.mean (M)
M_prime=[x-M_av for x in M]
t_tot=len(M)
A=np.mean([M_prime [x]*M_prime [x+tau] for x in range(t_tot-tau)])

return A

def findtau_e(M):
AO=findAcov(M,0)
for t in range(1,len(M)):
At=findAcov(M,t)
a=At/AO
if a>exp(-1):
pass
else:

return t

#32x32 lattice
T=np.linspace(1.5,10,20)
te=np.zeros((8,20))
for i in range(8):
for j in range(20):
M=[]
LAT=constrct_lattice(32)
for x in range(300):
LAT=sweep(LAT,32,T[j],H)
M.append (findM(LAT,32))
te[i] [jl=findtau_e (M)
te_f=np.average(te,axis=0)
te_err=np.std(te,axis=0)
print('Critical temperature is found to be',T[list(te_f).index(np.max(te_£))])
print('Decorrelation time at critical temperature
— is',max(te_f),'+-',te_err[list(te_f).index(np.max(te_£))])
plt.plot(T,te_f,'o")
plt.title('Decorrelation time r_e vs temperature for lattice 3272')

plt.xlabel('Temperature/(J/k_B)')

40

plt.ylabel('Decorrelation time')
plt.show()

"""t Task 2: Critical temperature

###16*%16 lattice

import numpy as np
import random as rd
from math import exp

import matplotlib.pyplot as plt

#parameter list

H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2#lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice[(i-1+N)%N] [jl+latti
o cel[i] [(j+1+N)%N]+lattice[1i] [(j-1+N)%N]+2*H)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j])
else:
p=rd.random()
if p<=exp(-E_f1lip/T):
lattice[i] [j1=np.int(-lattice[i] [j])
else:

pass

return lattice
def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np. sum(s0)

41

M=sum/ (N**2)

return M

#16x16

Mean magnetisation is equal to sum of total M divided by the number of steps
T=np.linspace(0.5,5,20)
M_av=np.zeros ((8,20))
for i in range(8):
for j in range(20):
M=[]
LAT=constrct_lattice(16)
for x in range(200): #find M after 199 sweeps
M.append (findM(LAT, 16))
LAT=sweep(LAT,16,T[j],H)
M_av[i] [j]=np.mean(M[100:])
M_f=np.average(M_av,axis=0)
def CT(M_£f,T):
p=np.isclose(M_f ,np.zeros(20),atol=0.05)
id=0
for i in p:
if i == False:
pass
else:
id=1list(p).index (i)
break
return T[id]
print('Critical temperature is found to be',CT(M_f,T))
plt.plot(T,M_f,'o")
plt.title('Magnetisation per spin vs Temperature: lattice 1672')
plt.xlabel (' Temperature/(J/k_B)"')
plt.ylabel('Magnetisation per spin')
plt.show()

"NUHHH32+32 lattice"""
import numpy as np
import random as rd

from math import exp

import matplotlib.pyplot as plt

#parameter list

42

H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N) ,dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N][jl+latti
o« ce[i] [(j+1+N)%N]+lattice[1i] [(j-1+N)%N]+2*H)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j])
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [jl=np.int(-lattice[i] [j])
else:

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum/ (N**2)

return M

#3232

Mean magnetisation is equal to sum of total M divided by the number of steps
T=np.linspace(0.5,5,20)
M_av=np.zeros ((8,20))
for i in range(8):
for j in range(20):
M=[]
LAT=constrct_lattice(32)
for x in range(200): #find M after 199 sweeps
M.append (findM(LAT,32))
LAT=sweep(LAT,32,T[j],H)

43

M_av[i] [jl=np.mean(M[100:])
M_f=np.average(M_av,axis=0)
def CT(M_£f,T):
p=np.isclose(M_f ,np.zeros(20),atol=0.05)
id=0
for i in p:
if i == False:
pass
else:
id=list(p).index (i)
break
return T[id]
print('Critical temperature is found to be',CT(M_f,T))
plt.plot(T,M_f,'o")
plt.title('Magnetisation per spin vs Temperature: lattice 3272')
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Magnetisation per spin')

"NUEHR64%64 lattice"""

import numpy as np
import random as rd
from math import exp

import matplotlib.pyplot as plt

#parameter list

H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a NxN lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2*lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jI+latti
— cel[i] [(j+1+N)YN]+lattice [i] [(j-1+N)¥%N]+2*H)
if E_flip<=0:
lattice[i]l [jl=np.int(-latticel[i] [j1)

else:

44

p=rd.random()
if p<=exp(-E_flip/T):

lattice[i] [j]l=np.int(-lattice[i] [j])
else:

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum/ (N**2)

return M

#64x64

Mean magnetisation is equal to sum of total M divided by the number of steps
T=np.linspace(0.5,5,20)
M_av=np.zeros((8,20))
for i in range(8):
for j in range(20):
M=[]
LAT=constrct_lattice(64)
for x in range(200): #find M after 199 sweeps
M.append (findM(LAT,64))
LAT=sweep(LAT,64,T[j],H)
M_av[i] [j]=np.mean(M[100:])
M_f=np.average(M_av,axis=0)
def CT(M_£f,T):
p=np.isclose(M_f ,np.zeros(20),atol=0.05)
id=0
for i in p:
if i == False:
pass
else:
id=1list(p) .index (i)
break
return T[id]
print('Critical temperature is found to be',CT(M_f,T))
plt.plot(T,M_f,'o")
plt.title('Magnetisation per spin vs Temperature: lattice 6472')
plt.xlabel('Temperature/(J/k_B)"')

45

plt.ylabel('Magnetisation per spin')

"ning# Task 3: C and \Chi

Specific heat

Energy computation

import numpy as np
import random as rd
from math import exp

import matplotlib.pyplot as plt

#parameter list

H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2#lattice[i] [j1*(lattice[(i+1+N)%N] [jl+lattice [(i-1+N)%N][jl+latti
o« cel[i] [(j+1+N)%N]+lattice[1i] [(j-1+N)%N]+2*H)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j])
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [jl=np.int(-lattice[i] [j])
else:

pass

return lattice
def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

46

sum=np.sum(s0)
M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice

E_field=-H*np.sum(np.sum(lattice,axis=0))

E_i=0

for i in range(N):

for j in range(N):

E_i+= -latticel[i] [jl*(lattice[(i+1+N)%N] [jl+lattice [(i-1+N)%N][jl+lattice
o [11[(G+1+N)YN] +1lattice [i] [(j-1+N)¥%N])

return (E_field+E_i)/ (2% (N*%2))

#verify the energy function is correct

T=np.linspace(0.5,5,15)
LAT=constrct_lattice(32)
Ef=[]
for t in T:
E=[]
for i in range(300):
LAT=sweep(LAT,32,t,H)
E.append (findE(LAT,32,H))
Ef .append (np.mean (E[200:]))

plt.plot(T,Ef,'o")

plt.xlabel('Temperature/(J/k_B)"')

plt.ylabel('Energy per spin/J')

plt.title('Energy per spin vs Temperature: lattice 3272')
plt.show()

"UHAHH16%16 lattice"""
import numpy as np
import random as rd

from math import exp

import matplotlib.pyplot as plt

#parameter list
H=0

47

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a NxN lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2*lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jI+latti
— cel[i] [(j+1+N)YN]+lattice [i] [(j-1+N)¥%N]+2*H)
if E_flip<=0:
lattice[i]l [jl=np.int(-latticel[i] [j1)
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [j1=np.int(-lattice[i] [j]1)
else:

pass
return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice

E_field=-H*np.sum(np.sum(lattice,axis=0))

E_i=0

for i in range(N):

for j in range(N):

E_i+= -latticel[i] [jl*(lattice[(i+1+N)%N] [jl+lattice [(i-1+N)¥%N] [jl+lattice
o [A1[@G+1+N) %N +1attice [1] [(j-1+N)%N]1)

return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity per spin in equillibrium state
return np.var(E[100:])/ ((T*N)**2)

def findTC(C,T):
return T[1list(C).index(np.max(C))]

48

#16*16 lattice
T=np.linspace(1.5,3.5,20)
C=np.zeros((5,20))
for i in range(5):
for j in range(20):
E1=[]
LAT1=constrct_lattice(16)
for x in range(300): #find M after 299 sweeps
El.append (findE(LAT1,16,H))
LAT1=sweep(LAT1,16,T[j],H)
C[i] [j1=findC(E1,T[j],20)
C_f=np.average(C,axis=0)
plt.plot(T,C_£f,'0")
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Specific heat per spin/k_B')
plt.title('Specific heat per spin vs temperature: lattice 1672')
print('Critical temperature is found to be',findTC(C_f,T))

"NUEHH#H32%32 lattice"""

import numpy as np
import random as rd
from math import exp

import matplotlib.pyplot as plt

#parameter list

H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+*lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jl+latti
o« cel[i] [(j+1+N)%N]+lattice[1i] [(j-1+N)%N]+2*H)
if E_flip<=0:
latticel[i] [jI1=np.int(-lattice[i]l[j1)

49

else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [j1=np.int(-lattice[i] [j])
else:

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice

E_field=-H#np.sum(np.sum(lattice,axis=0))

E_i=0

for i in range(N):

for j in range(N):

E_i+= -lattice[i] [jl*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N][j]l+lattice
o [L1[(G+1+N)%N] +1lattice [1] [(j-1+N)%N]1)

return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity per spin in equillibrium state
return np.var(E[100:]1)/((T*N)**2)

def findTC(C,T):
return T[1ist(C).index(np.max(C))]

#32%32 lattice
T=np.linspace(1.5,3.5,20)
C=np.zeros((5,20))
for i in range(5):
for j in range(20):
E1=[]
LAT1=constrct_lattice(32)
for x in range(300): #find M after 299 sweeps
El.append (findE(LAT1,32,H))
LAT1=sweep(LAT1,32,T[j],H)
C[i] [j1=findC(E1,T[j],20)

C_f=np.average(C,axis=0)

50

plt.plot(T,C_f,'o")

plt.xlabel('Temperature/(J/k_B)"')

plt.ylabel('Specific heat per spin/k_B')

plt.title('Specific heat per spin vs temperature: lattice 3272')
print('Critical temperature is found to be',findTC(C_f,T))

"NUERRHG64%64 lattice"""

import numpy as np
import random as rd
from math import exp

import matplotlib.pyplot as plt

#parameter list

H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2#lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice[(i-1+N)%N] [jl+latti
o cel[i] [(j+1+N)%N]+lattice[1i] [(j-1+N)%N]+2*H)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j])
else:
p=rd.random()
if p<=exp(-E_f1lip/T):
lattice[i] [j1=np.int(-lattice[i] [j])
else:

pass

return lattice
def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np. sum(s0)

51

M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice

E_field=-H#np.sum(np.sum(lattice,axis=0))

E_i=0

for i in range(N):

for j in range(N):

E_i+= -lattice[i] [j1*(lattice [(i+1+N)%N][jl+lattice [(i-1+N)%N][j]l+lattice
o [[(G+1+M) %N] +1attice [1] [(j-1+N)%N])

return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity per spin in equillibrium state
return np.var(E[100:]1)/ ((T*N)**2)

def findTC(C,T):
return T[list(C).index(np.max(C))]

#64%64 lattice
T=np.linspace(1.5,3.5,20)
C=np.zeros((5,20))
for i in range(5):
for j in range(20):
E1=[]
LAT1=constrct_lattice(64)
for x in range(300): #find M after 299 sweeps
El.append (findE(LAT1,64,H))
LAT1=sweep(LAT1,64,T[j],H)
C[i] [j1=findC(E1,T[j],20)
C_f=np.average(C,axis=0)
plt.plot(T,C_f,'o")
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Specific heat per spin/k_B')
plt.title('Specific heat per spin vs temperature: lattice 6472')
print('Critical temperature is found to be',findTC(C_f,T))

" Magnetic susceptibility

####16%x16 lattice

import numpy as np

52

import random as rd
from math import exp

import matplotlib.pyplot as plt

#parameter list
H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N) ,dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2*lattice[i] [jl*(lattice[(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jl+latti
— cel[i] [(j+1+N)YN]+lattice [i] [(j-1+N)¥%N]+2*H)
if E_flip<=0:
lattice[i]l [jl=np.int(-latticel[i] [j1)
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i]l [j1=np.int(-latticel[i] [j]1)
else:

pass
return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice
E_field=-H*np.sum(np.sum(lattice,axis=0))
E_i=0
for i in range(N):

for j in range(N):

53

E_i+= -lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N][j]l+lattice
o [[(+1+N) %N] +1attice [i] [(j=1+N)%N])
return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity per spin in equillibrium state
return np.var(E[100:])/((T*N)**2)

def findX(M,T,N): #find susceptibility per spin
return np.var(M[100:1)/ (T*N*N)

def findTC(C,T):
return T[1ist(C).index(np.max(C))]

#16*16 lattice
T=np.linspace(1,4,20)
X=np.zeros((5,20))
for i in range(5):
for j in range(20):
M1=[]
LAT1=constrct_lattice(16)
for x in range(300): #find M after 299 sweeps
M1.append (findM(LAT1,16))
LAT1=sweep(LAT1,16,T[j],H)
X[i] [j]=findX(M1,T[j],16)
X_f=np.average(X,axis=0)
plt.plot(T,X_f,'o")
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Susceptibility per spin/k_B')
plt.title('Susceptibility per spin vs temperature: lattice 1672')
print('Critical temperature is found to be',findTC(X_f,T))

" HHHH32+32 lattice"""
import numpy as np
import random as rd

from math import exp

import matplotlib.pyplot as plt

#parameter list

H=0

#functions

54

def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones ((N,N) ,dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j]*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jl+latti
— ce[i] [(j+1+N)¥N]+1lattice[1] [(j-1+N)%N]+2xH)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j1)
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [j1=np.int(-lattice[i] [j])
else:

pass
return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice
E_field=-H#np.sum(np.sum(lattice,axis=0))
E_i=0
for i in range(N):
for j in range(N):
E_i+= -lattice[i] [jl*(lattice[(i+1+N)%N] [jl+lattice[(i-1+N)%N] [jl+lattice

o [1L(G+1+N) %N] +1attice [i] [(G-1+N)%NT)
return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity per spin in equillibrium state
return np.var(E[100:])/((T*N)**2)

def findX(M,T,N): #find susceptibility per spin
return np.var(M[100:1)/ (T*N*N)

def findTC(C,T):

55

return T[list(C).index(np.max(C))]

#32%32 lattice
T=np.linspace(1,4,20)
X=np.zeros((5,20))
for i in range(5):
for j in range(20):
M1=[]
LAT1=constrct_lattice(32)
for x in range(300): #find M after 299 sweeps
M1.append (findM(LAT1,32))
LAT1=sweep(LAT1,32,T[j],H)
X[i] [j1=findX(M1,T[j],32)
X_f=np.average(X,axis=0)
plt.plot(T,X_f,'o")
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Susceptibility per spin/k_B')
plt.title('Susceptibility per spin vs temperature: lattice 3272')
print('Critical temperature is found to be',findTC(X_f,T))

" EHEHEAX64 lattice"""

import numpy as np
import random as rd
from math import exp

import matplotlib.pyplot as plt

#parameter list
H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N) ,dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j]*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jl+latti
o cel[i] [(j+1+N)YN]+lattice [i] [(j-1+N)¥%N]+2xH)

56

if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j1)
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i]l [j1=np.int(-latticel[i] [j])
else:

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np . sum(s0)

M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice

E_field=-H#np.sum(np.sum(lattice,axis=0))

E_i=0

for i in range(N):

for j in range(N):

E_i+= -lattice[i] [jl1*(lattice [(i+1+N)%N][jl+lattice[(i-1+N)%N] [j1+lattice
o [L1[(G+1+N) %N] +1lattice [1] [(j-1+N)%N]1)

return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity per spin in equillibrium state
return np.var(E[100:])/ ((T*N)**2)

def findX(M,T,N): #find susceptibility per spin
return np.var(M[100:])/ (T*N*N)

def findTC(C,T):
return T[list(C).index(np.max(C))]

#64%64 lattice
T=np.linspace(1,4,20)
X=np.zeros((5,20))
for i in range(5):
for j in range(20):
M1=[]
LAT1=constrct_lattice(64)

57

for x in range(300): #find M after 299 sweeps
M1.append (findM(LAT1,64))
LAT1=sweep(LAT1,64,T[j],H)

X[i] [j]=findX(M1,T[j],64)

X_f=np.average(X,axis=0)

plt.plot(T,X_f,'o")
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Susceptibility per spin/k_B')

plt.title('Susceptibility per spin vs temperature: lattice 6472')
print('Critical temperature is found to be',findTC(X_f,T))

"""##Task 4: critical exponents

\alpha

import numpy as np

import random as rd

from math import exp,log

import matplotlib.pyplot as plt

from scipy import stats

#parameter list
H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N) ,dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j]*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jl+latti
— ce[i] [(j+1+N)¥N]+1lattice[1] [(-1+N)%N]+2xH)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j]1)
else:

p=rd.random()

58

if p<=exp(-E_flip/T):
lattice[i]l [j1=np.int(-latticel[i] [j])
else:

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice

E_field=-H#np.sum(np.sum(lattice,axis=0))

E_i=0

for i in range(N):

for j in range(N):

E_i+= -lattice[il [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N][jl+lattice
o [[(G+1+N) %N] +1lattice [1] [(j-1+N)%N]1)

return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity in equillibrium state
return np.var(E[100:])/(T**2)

def findTC(C,T):
return T[1list(C).index(np.max(C))]

#32x32 lattice, T_c found to be 2.3421
T=np.linspace(2.28,2.32,20)
C=np.zeros((5,20))
for i in range(5):
for j in range(20):
E1=[]
LAT1=constrct_lattice(32)
for x in range(300): #find M after 299 sweeps
El.append (findE(LAT1,32,H))
LAT1=sweep(LAT1,32,T[j],H)
C[i] [j1=findC(E1,T[j],20)

C_f=np.average(C,axis=0)

59

plt.plot([(2.3421-t) for t in T], C_f,'o")
plt.xlabel('t/(J/k_B)")
plt.ylabel('Specific Heat')

plt.title('Specific heat vs reduced temperature')

1nC=[log(c) for c¢ in C_f]
1nt=[log(2.3421-t) for t in T]

slope, intercept, r_value, p_value, std_err = stats.linregress(lnt,1lnC)
print('Critical exponent \alpha is found to be', -slope, '. Analytic \alpha is
— expected to be 0.')

nn ll### \betall nn

import numpy as np

import random as rd

from math import exp,log

import matplotlib.pyplot as plt

from scipy import stats

#parameter list
H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones ((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j]*(lattice[(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jl+latti
o cel[i] [(j+1+N)YN]+lattice [i] [(j—-1+N)¥%N]+2*H)
if E_flip<=0:
lattice[i]l [j1=np.int(-lattice[il [j1)
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [j1=np.int(-lattice[i] [j])
else:

pass

60

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice

E_field=-H#np.sum(np.sum(lattice,axis=0))

E_i=0

for i in range(N):

for j in range(N):

E_i+= -lattice[il [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N][jl+lattice
o [L1[(G+1+N) %N] +1lattice [1] [(j-1+N)%N])

return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity in equillibrium state
return np.var(E[100:])/(T**2)

def findTC(C,T):
return T[1ist(C).index(np.max(C))]

#3232 lattice, T_c found to be 2.3421
T=np.linspace(2.28,2.32,20)
M_av=np.zeros ((5,20))
for i in range(5):
for j in range(20):
M=[]
LAT1=constrct_lattice(32)
for x in range(300): #find M after 299 sweeps
M.append (findM(LAT1,32))
LAT1=sweep(LAT1,32,T[j],H)
M_av[i] [j]l=np.average(M[100:])
M_f=np.average(M_av,axis=0)
1nM=[log(m) for m in M_f]
1nt=[log(2.3421-t) for t in T]

coeffs = np.polyfit(lnt,1lnM, 1);
fittedX1
fittedY1

np.linspace(min(lnt), max(lnt), 200);

np.polyval(coeffs, fittedX1);

61

plt.plot(fittedX1l, fittedY1l, 'b-');

plt.plot(1nt,1nM,'o")
plt.xlabel('1ln(t) ")
plt.ylabel('ln(Magnetisation)')
plt.title('1ln(Magnetisation) vs 1n(t)')

slope, intercept, r_value, p_value, std_err = stats.linregress(lnt,1lnM)
print('Critical exponent beta is found to be', slope, '+-',std_err,'. Analytic

— beta is expected to be 0.125')

iRt \delta

T=5 hysteresis

import numpy as np

import random as rd

from math import exp,log

import matplotlib.pyplot as plt

from scipy import stats

#Above critical temperature

parameter list

T=5

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j1*(lattice[(i+1+N)%N] [jl+lattice [(i-1+N)%N][jl+latti
o« ce[i] [(j+1+N)%N]+lattice[1i] [(j-1+N)%N]+2H)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j])
else:
p=rd.random()

if p<=exp(-E_flip/T):

62

lattice[i] [j1=np.int(-lattice[i] [j])
else:

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np. sum(s0)

M=sum/ (N**2)

return M

Hp=np.linspace(-5,5,30)

Mp=np.zeros((5,30))

for i in range(5):
for j in range(30):
LATp=constrct_lattice(32)
for x in range(150):
LATp=sweep(LATp,32,T,Hp[j])
Mp[il [j1=findM(LATp,32)

Mp_£f=np.average (Mp,axis=0)

plt.plot (Hp,Mp_f,'o")

plt.xlabel('External field/T')

plt.ylabel('Magnetisation per spin')
plt.title('Magnetisation per spin vs external field at T=5')

plt.show()

""UH4## T=1.1 hysteresis"""
import numpy as np

import random as rd

from math import exp,log

import matplotlib.pyplot as plt

from scipy import stats

#below critical temperature

parameter list

63

T=1.1

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones ((N,N) ,dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j]*(lattice[(i+1+N)%N] [jl+lattice[(i-1+N)%N][jl+latti
o cel[i] [(j+1+N)YN]+lattice [i] [(j-1+N)¥%N]+2H)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i]l [j]1)
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [j1=np.int(-lattice[i] [j])
else:

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum/ (N**2)

return M
Hp=np.linspace(-5,5,30)
Mp=np.zeros((5,30))

for i in range(5):
for j in range(30):
LATp=constrct_lattice(32)
for x in range(150):
LATp=sweep (LATp,32,T,Hp[j])
Mp[il [j]1=findM(LATp,32)

64

Mp_f=np.average (Mp,axis=0)

plt.plot(Hp,Mp_£f,'o")

plt.xlabel('External field/T')

plt.ylabel('Magnetisation per spin')

plt.title('Magnetisation per spin vs external field at T=1.1')

plt.show()

"Uig## \delta linear regression"""

import numpy as np

import random as rd

from math import exp,log

import matplotlib.pyplot as plt

from scipy import stats

parameter list
T=2.34

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j1*(lattice[(i+1+N)%N] [jl+lattice[(i-1+N)%N][jl+latti
o« cel[i] [(j+1+N)%N]+lattice[1i] [(j-1+N)%N]+2*H)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j1)
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i]l [j1=np.int(-latticel[i] [j])
else:

pass

return lattice

65

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

return M

Hp=np.linspace(0.5,1.5,30)

Mp=np.zeros((5,30))

for i in range(5):
for j in range(30):
LATp=constrct_lattice(32)
for x in range(150):
LATp=sweep (LATp,32,T,Hp[j]1)
Mp[i] [j]=findM(LATp,32)

Mp_£f=np.average (Mp,axis=0)
1nM=[log(m) for m in Mp_f]
1nH=[log(h) for h in Hp]

plt.plot(1nH,1nM,'o")

plt.xlabel('ln(H)")

plt.ylabel('ln(Magnetisation)')

plt.title('Critical component delta: ln(Magnetisation) vs 1ln(H)')

coeffs = np.polyfit(1nH,1nM, 1);

fittedX1l = np.linspace(min(1lnH), max(1nH), 200);

fittedYl = np.polyval(coeffs, fittedX1);

plt.plot(fittedX1l, fittedY1, 'b-');

slope, intercept, r_value, p_value, std_err = stats.linregress(1lnH,1nM)
print('Critical exponent delta is found to be', 1/slope, '. Analytic delta is
— expected to be 15')

plt.show()

"""##Task 5: finite size scaling

Statement 1

66

import numpy as np

import random as rd

from math import exp,log

import matplotlib.pyplot as plt

from scipy import stats

#parameter list
H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j]*(lattice[(i+1+N)%N] [jl+lattice [(i-1+N)%N][jl+latti
o cel[i] [(j+1+N)YNI+lattice[i] [(j—-1+N)%N]I+2*H)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j]1)
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [j1=np.int(-lattice[i] [j])
else:

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1

sO=np.sum(lattice,axis=0)

sum=np.sum(s0)

M=sum#/ (N**2)

return M
def findE(lattice,N,H): #find energy per spin of the lattice
E_field=-H#np.sum(np.sum(lattice,axis=0))

E_i=0

67

for i in range(N):
for j in range(N):
E_i+= -lattice[i] [jl1*x(Qattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N] [jl+lattice
o [1]1[(G+1+N)YN] +1lattice [1] [(G-1+N)%NI)
return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity per spin in equillibrium state
return np.var(E[100:]1)/((T*N)**2)

def findTC(C,T):
return T[1list(C).index(np.max(C))]

N=[np.int(x) for x in np.linspace(5,65,7)]
T=np.linspace(2.15,2.35,10)
Tc=np.zeros((3,7))

for i in range(3):

for j in range(7):

c=[]
for t in T:
E1=[]

LAT1=constrct_lattice(N[j])
for x in range(200): #find M after 199 sweeps
El.append (findE(LAT1,N[j],H))
LAT1=sweep(LAT1,N[j],t,H)
c.append(findC(E1,t,N[j1))
Tc[i] [j1=findTC(c,T)

Tc_f=np.average(Tc, axis=0)
N_inv=[1/1 for 1 in NI

slope, intercept, r_value, p_value, intercept_stderr =

— stats.linregress(N_inv,Tc_f)

coeffs = np.polyfit(N_inv, Tc_f, 1);
fittedXl = np.linspace(min(N_inv), max(N_inv), 200);
fittedYl = np.polyval(coeffs, fittedX1);

plt.plot(N_inv,Tc_f,'o")
plt.plot(fittedX1l, fittedY1, 'b-')
plt.xlabel('1/N")

plt.ylabel('Critical Temperature/(J/k_B)')

68

plt.title('Critical temperature vs 1/N')

print (r_value,intercept)

print('Tc(inf) is equal to', intercept, '+-', intercept_stderr, 'Analytic result
— is 2.2692.')
plt.show()

"""###Statement 2"""

import numpy as np

import random as rd

from math import exp,log

import matplotlib.pyplot as plt

from scipy import stats

#parameter list
H=0

#functions
def constrct_lattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N),dtype=int)

return 1

def sweep(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at temp
— T with external field strength H
for i in range(N):
for j in range(N):
E_flip=2+lattice[i] [j1*(lattice [(i+1+N)%N] [jl+lattice [(i-1+N)%N][jl+latti
o cel[i] [(j+1+N)YNI+lattice[i] [(j—-1+N)%N]+2*H)
if E_flip<=0:
lattice[i] [jl=np.int(-lattice[i] [j])
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [j1=np.int(-lattice[i] [j])
else:

pass
return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation

— such that when fully alligned M=+-1

69

sO=np.sum(lattice,axis=0)
sum=np. sum(s0)
M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice

E_field=-H#np.sum(np.sum(lattice,axis=0))

E_i=0

for i in range(N):

for j in range(N):

E_i+= -latticel[il] [jl*(lattice[(i+1+N)%N] [jl+lattice [(i-1+N)¥%N] [jl+lattice
o [L1[G+1+N) %N] +1attice [1] [(j-1+N)%N]1)

return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity per spin in equillibrium state
return np.var(E[100:]1)/((T*N)**2)

def findTC(C,T):
return T[1ist(C).index(np.max(C))]

N=[np.int(x) for x in np.linspace(5,65,7)]
T=np.linspace(2.15,2.35,10)
Cmax=np.zeros((5,7))

for i in range(5):

for j in range(7):

c=[]
for t in T:
E1=[]

LAT1=constrct_lattice(N[j])
for x in range(200): #find M after 199 sweeps
El.append (findE(LAT1,N[j],H))
LAT1=sweep(LAT1,N[j],t,H)
c.append(findC(E1,t,N[j1))
Cmax[i] [j]=np.max(c)

Cmax_f=np.average (Cmax,axis=0)

1nN2=[log(n) for n in N]

plt.plot(1nN2,Cmax_f,'o")

plt.xlabel('ln(lattice size, N)')

plt.ylabel('Specific heat per spin at T_c')

plt.title('Specific heat per spin at T_c vs 1ln(lattice size, N)')

slope, intercept, r_value, p_value, std_err = stats.1inregress(1nN2,Cmax_f)

70

coeffs = np.polyfit(1lnN2,Cmax_£f, 1);
fittedXl = np.linspace(min(1nN2), max(1lnN2), 200);
fittedYl = np.polyval(coeffs, fittedX1l);

plt.plot(fittedX1l, fittedY1l, 'b-')

print (r_value)
print('Slope is found to be', slope,'+-',std_err,'and it is expected to be 1.')

plt.show()

nnngPart 3: 3D lattice

##Task 1: decorelation time

import numpy as np
import random as rd
from math import exp,sqrt

import matplotlib.pyplot as plt

#parameter list

H=0

#functions
def constrct_3Dlattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N,N),dtype=int)

return 1

def sweep3D(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at
— temp T with external field strength H
for i in range(N):
for j in range(N):
for k in range(N):
E_flip=2*latticel[i] [j] [k]l*(lattice[(i+1+N)%N] [j] [kl+lattice[(i-1+N)%N] [
— jlk]+lattice[i] [(j+1+N)%N] [k]+lattice[i] [(j-1+N)%N] [k]+lattice[i] [
o j10k-1+N)%N]+lattice [i] [j] [(k+1+N)%N]+2xH)
if E_flip<=0:
lattice[i] [j] [k]=np.int(-lattice[i] [j] [k])

else:

p=rd.random()

71

if p<=exp(-E_flip/T):
lattice[i] [j] [k]=np.int(-lattice[i] [j] [k])
else:

pass

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1
sum=np.sum(np.sum(np.sum(lattice,axis=0) ,axis=0))
M=sum#/ (N**2)

return M

def findAcov(M,tau): #find autocorelation
M_av=np.mean (M)
M_prime=[x-M_av for x in M]
t_tot=len(M)
A=np.mean([M_prime [x]*M_prime [x+tau] for x in range(t_tot-tau)])

return A

def findtau_e(M):
AO=findAcov(M,0)
for t in range(1,len(M)):
At=findAcov(M,t)
a=At/AO
if a>exp(-1):
pass
else:

return t

#16%16*16 lattice
T=np.linspace(1.5,10,20)
te=np.zeros ((5,20))
for i in range(5):
for j in range(20):
M=[]
LAT=constrct_3Dlattice(16)
for x in range(300):
LAT=sweep3D(LAT,16,T[j],H)
M.append (findM(LAT, 16))
te[i] [j1=findtau_e (M)
te_f=np.average(te,axis=0)

te_err=np.std(te,axis=0)

72

print ('Decorreltation time at Tc is found to be',np.max(te_f),'+-',
— te_err[list(te_f).index(np.max(te_£))]/sqrt(5))
plt.plot(T,te_f,'o")

plt.title('Decorrelation time r_e vs temperature for lattice 1673')
plt.xlabel('Temperature/(J/k_B)"')

plt.ylabel('Decorrelation time')

plt.show()

"""## Task 2: Critical temperature"""

import numpy as np
import random as rd
from math import exp

import matplotlib.pyplot as plt

#parameter list
H=0

#functions
def constrct_3Dlattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N,N),dtype=int)

return 1

def sweep3D(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at
— temp T with external field strength H
for i in range(N):
for j in range(N):
for k in range(N):
E_flip=2«lattice[i] [j] [k]*(lattice[(i+1+N)%N] [j] [k]l+lattice [(i-1+N)%N] [
— jlkl+lattice[i] [(j+1+N)%N] [k]+lattice[i] [(j-1+N)%N] [k]+lattice[i] [
o JI0x-1+N) %N]+lattice [i] [j] [(k+1+N)%N]+2xH)
if E_flip<=0:
lattice[i] [j] [k]=np.int(-lattice[i] [j] [k])
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [j] [k]=np.int(-lattice[i] [j] [k])
else:

pass

73

return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1
sum=np.sum(np.sum(np.sum(lattice,axis=0) ,axis=0))
M=sum/ (N**2)

return M

Mean magnetisation is equal to sum of total M divided by the number of steps
T=np.linspace(1.5,8,50)
M_av=[]
for t in T:
M=[]
LAT=constrct_3Dlattice(16)
for x in range(200): #find M after 199 sweeps
M.append (findM(LAT, 16))
LAT=sweep3D(LAT,16,t,H)
M_av.append(np.mean(M[100:]))

def CT(M_£f,T):
p=np.isclose(M_f ,np.zeros(50),atol=0.5)
id=0
for i in p:
if i == False:
pass
else:
id=1list(p) .index (i)
break
return T[id]
print('Critical temperature is found to be',CT(M_av,T))

plt.plot(T,M_av,'o")

plt.title('Magnetisation per spin vs Temperature: lattice 1673')
plt.xlabel('Temperature/(J/k_B)"')

plt.ylabel('Magnetisation per spin')

"""## Task 3: Specific heat"""

import numpy as np
import random as rd
from math import exp

import matplotlib.pyplot as plt

74

#parameter list

H=0

#function
def constrct_3Dlattice(N): #set up an N*N lattice with all spins alligned upward
1=np.ones((N,N,N),dtype=int)

return 1

def sweep3D(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at
— temp T with external field strength H
for i in range(N):
for j in range(N):
for k in range(N):
E_flip=2+*latticel[i] [j] [k]l*(lattice[(i+1+N)%N] [j] [k]l+lattice[(i-1+N)%N] [
— jlk]+lattice[i] [(j+1+N)%N] [k]+lattice[1] [(j-1+N)%N] [k]+lattice[i] [
o J10k-1+N)%NI+lattice [1] [j] [(k+1+N)%NI+2*H)
if E_flip<=0:
latticel[i] [j] [k]=np.int(-lattice[i] [j] [k])
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [j] [k]=np.int(-lattice[i] [j] [k])
else:

pass
return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1
sum=np.sum(np.sum(np.sum(lattice,axis=0) ,axis=0))
M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice
E_field=-H#np.sum(np.sum(lattice,axis=0))
E_i=0
for i in range(N):
for j in range(N):

for k in range(N):

(0]

E_i+= -lattice[il [j] [k]*(lattice[(i+1+N)%N] [j] [k]l+lattice [(i-1+N)%N][j]
— [kl+lattice[i] [(j+1+N)%N] [k]+lattice[i] [(j-1+N)%N] [k]l+lattice[i] [j]
o [(k-1+N)Y%N]+1lattice[i] [§] [(k+1+N)¥%N])

return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity per spin in equillibrium state
return np.var(E[100:])/((T*N)**2)

def findTC(C,T):
return T[1list(C).index(np.max(C))]

#16x16*x16 lattice
T=np.linspace(3,6,30)
C=np.zeros((5,30))
for i in range(5):
for j in range(30):
E1=[]
LAT1=constrct_3Dlattice(16)
for x in range(200): #find M after 299 sweeps
El.append (findE(LAT1,16,H))
LAT1=sweep3D(LAT1,16,T[j],H)
C[i] [j1=findC(E1,T[j],16)
C_f=np.average(C,axis=0)
plt.plot(T,C_f,'o")
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Specific heat per spin/k_B')
plt.title('Specific heat per spin vs temperature: lattice 1673')
print (£indTC(C_£,T))

"""##Task 4: Susceptibility"""
import numpy as np
import random as rd

from math import exp

import matplotlib.pyplot as plt

#parameter list
H=0

#function

def constrct_3Dlattice(N): #set up an N*N lattice with all spins alligned upward

76

1=np.ones((N,N,N),dtype=int)

return 1

def sweep3D(lattice,N,T,H): #perform 1 complete sweep over a N*N lattice at
— temp T with external field strength H
for i in range(N):
for j in range(N):
for k in range(N):
E_flip=2+lattice[i] [j] [k]*(lattice [(i+1+N)%N] [j] [k]+lattice [(i-1+N)%N][
— jllkl+lattice[i] [(j+1+N)%N] [k]l+lattice[i] [(j-1+N)%N] [k]l+lattice[il [
o JILxk-1+N)%N]+lattice [i] [j] [(k+1+N)%N]+2xH)
if E_flip<=0:
lattice[i] [j] [k]=np.int (-lattice[i] [j] [k])
else:
p=rd.random()
if p<=exp(-E_flip/T):
lattice[i] [j] [k]=np.int (-lattice[i] [j] [k])
else:

pass
return lattice

def findM(lattice,N): #use this function to find total normalized magnetisation
— such that when fully alligned M=+-1
sum=np.sum(np.sum(np.sum(lattice,axis=0) ,axis=0))
M=sum#/ (N**2)

return M

def findE(lattice,N,H): #find energy per spin of the lattice

E_field=-H*np.sum(np.sum(lattice,axis=0))

E_i=0

for i in range(N):

for j in range(N):
for k in range(N):

E_i+= -lattice[i] [j] [k]*(lattice[(i+1+N)%N] [j] [k]+lattice[(i-1+N)%N][j]
< [xkl+latticel[i] [(j+1+N)%N] [k]+lattice[i] [(j-1+N)%N] [k]+lattice[i] [j]
o [k=1+N)%N]1+lattice[i] [j] [(k+1+N)%NI)

return (E_field+E_i)/(2)

def findC(E,T,N): #find heat capacity per spin in equillibrium state
return np.var(E[100:]1)/((T*N)**2)

7

def findX(M,T,N): #find heat capacity per spin in equillibrium state
return np.var(M[100:]1)/ ((T*N*N)

def findTC(C,T):
return T[1list(C).index(np.max(C))]

#16%16*16 lattice
T=np.linspace(3,6,40)
X=np.zeros((5,40))
for i in range(5):
for j in range(40):
M1=[]
LAT1=constrct_3Dlattice(16)
for x in range(300): #find M after 299 sweeps
M1.append (findM(LAT1,16))
LAT1=sweep3D(LAT1,16,T[j],H)
X[i] [j]1=findX(M1,T[j],16)
X_f=np.average(X,axis=0)
plt.plot(T,X_f,'o")
plt.xlabel('Temperature/(J/k_B)"')
plt.ylabel('Susceptibility per spin/k_B')
plt.title('Susceptibility per spin vs temperature: lattice 1673')
print (findTC(X_£,T))

78

	Introduction
	Analysis
	Implementation
	2D lattice
	3D lattice

	2D Lattice Results
	Equilibrium Time
	Rough Estimate,te
	Decorrelation Time, e

	Critical Temperature
	Specific Heat and Magnetic Susceptibility
	Critical Exponents
	Evaluation of
	Evaluation of
	Evaluation of

	Finite Size Scaling
	Statement 1
	Statement 2

	3D Lattice Results
	Decorrelation Time
	Critical Temperature
	Specific Heat and Susceptibility

	Discussion

